题目内容
20、已知关于x的一元二次方程x2+bx+c=x有两个实数根x1,x2,且满足x1>0,x2-x1>1.
(1)试证明c>0;
(2)证明b2>2(b+2c);
(3)对于二次函数y=x2+bx+c,若自变量取值为x0,其对应的函数值为y0,则当0<x0<x1时,试比较y0与x1的大小.
(1)试证明c>0;
(2)证明b2>2(b+2c);
(3)对于二次函数y=x2+bx+c,若自变量取值为x0,其对应的函数值为y0,则当0<x0<x1时,试比较y0与x1的大小.
分析:(1)利用根与系数的关系,来可以求出c和两根之和、两根之积的关系式,然后利用已知条件就可以证明题目结论;
(2)利用根于系数的关系得出x1+x2=-(b-1),x1•x2=c,把它们代入(x2-x1)2可得出b2-2b-4c+1,然后再利用(x2-x1)2>1求出b2-2b-4c>0即可证明;
(3)本题主要用作差法来比较y0与x1的大小,先把x0,x1分别代入方程得出关于y0,与x1的代数式,再用作差法比较大小.
(2)利用根于系数的关系得出x1+x2=-(b-1),x1•x2=c,把它们代入(x2-x1)2可得出b2-2b-4c+1,然后再利用(x2-x1)2>1求出b2-2b-4c>0即可证明;
(3)本题主要用作差法来比较y0与x1的大小,先把x0,x1分别代入方程得出关于y0,与x1的代数式,再用作差法比较大小.
解答:解:(1)将已知的一元二次方程化为一般形式即x2+(b-1)x+c=0,
∵x1,x2是该方程的两个实数根
∴x1+x2=-(b-1),x1•x2=c,
而x1>0,x2>x1+1>0,
∴c>0;
(2)(x2-x1)2=(x2+x1)2-4x1x2=(b-1)2-4c
=b2-2b-4c+1,
∵x2-x1>1,∴(x2-x1)2>1,
于是b2-2b-4c+1>1,即b2-2b-4c>0,
∴b2>2(b+2c);
(3)当0<x0<x1时,有y0>x1,
∵y0=x02+bx0+c,x12+bx1+c=x1,
∴y0-x1=x02+bx0+c-(x12+bx1+c)=(x0-x1)(x0+x1+b),
∵0<x0<x1,
∴x0-x1<0,
又∵x2-x1>1
∴x2>x1+1,x1+x2>2x1+1,
∵x1+x2=-(b-1)∴-(b-1)>2x1+1,
于是2x1+b<0
∵0<x0<x1
∴x0+x1+b<0,
由于x0-x1<0,x0+x1+b<0,
∴(x0-x1)(x0+x1+b)>0,即y0-x1>0,
∴当0<x0<x1时,有y0>x1.
∵x1,x2是该方程的两个实数根
∴x1+x2=-(b-1),x1•x2=c,
而x1>0,x2>x1+1>0,
∴c>0;
(2)(x2-x1)2=(x2+x1)2-4x1x2=(b-1)2-4c
=b2-2b-4c+1,
∵x2-x1>1,∴(x2-x1)2>1,
于是b2-2b-4c+1>1,即b2-2b-4c>0,
∴b2>2(b+2c);
(3)当0<x0<x1时,有y0>x1,
∵y0=x02+bx0+c,x12+bx1+c=x1,
∴y0-x1=x02+bx0+c-(x12+bx1+c)=(x0-x1)(x0+x1+b),
∵0<x0<x1,
∴x0-x1<0,
又∵x2-x1>1
∴x2>x1+1,x1+x2>2x1+1,
∵x1+x2=-(b-1)∴-(b-1)>2x1+1,
于是2x1+b<0
∵0<x0<x1
∴x0+x1+b<0,
由于x0-x1<0,x0+x1+b<0,
∴(x0-x1)(x0+x1+b)>0,即y0-x1>0,
∴当0<x0<x1时,有y0>x1.
点评:本题考查了一元二次方程根与系数的关系.解此类题目要会代数式变形为两根之积或两根之和的形式,代入数值计算即可.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=-$\frac{b}{a}$,x1•x2=$\frac{c}{a}$.
练习册系列答案
相关题目
已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2,
+
=1,则k的值是( )
1 |
x1 |
1 |
x2 |
A、8 | B、-7 | C、6 | D、5 |