题目内容
【题目】如图,在Rt△AOB中,∠AOB=90°,∠BAO=30°,以AB为一边作等边△ABE,作OA的垂直平分线MN交AB的垂线AD于点D.
(1)连接BD,OE.求证:BD=OE;
(2)连接DE交AB于F.求证:F为DE的中点.
【答案】(1)见解析;(2)见解析.
【解析】
(1)连接OD,易证△ADO为等边三角形,再证△ABD≌△AEO即可.
(2)作EH⊥AB于H,先证△ABO≌△AEH,得AO=EH,再证△AFD≌△HFE即可.
证明:(1)连接OD,如图1,
∵△ABE是等边三角形,
∴AB=BE,∠EAB=60°,
∵DA⊥BA,
∴∠DAB=90°,
∵∠BAO=30°,
∴∠DAO=90°﹣30°=60°,
∴∠OAE=∠DAB,
∵MN垂直平分OA,
∴OD=DA,
∴△AOD是等边三角形,
∴DA=OA,
∴△ABD≌△AEO(SAS),
∴BD=OE;
(2)证明:如图2,作EH⊥AB于H,
∴∠EHA=∠DAF=90°,
∵AE=BE,
∴2AH=AB,
∵∠AOB=90°,∠BAO=30°,
∴2OB=AB,
∴AH=BO,
∴Rt△AEH≌Rt△BAO(HL),
∴EH=AO=AD,
∵∠EHF=∠DAF=90°,∠EFH=∠DFA,
∴△HFE≌△AFD(AAS),
∴EF=DF,
∴F为DE的中点.
练习册系列答案
相关题目