题目内容
【题目】已知坐标平面内的三个点A(1,3),B(4,1),O(0,0),求△ABO的面积.
【答案】5.5
【解析】
试题分析:根据题意得出OC=DE=3,AC=1,CD=OE=4,BE=1,得出AD=DC﹣AC=3,BD=DE﹣BE=2,则三角形ABC的面积可以转化为矩形的面积减去三个直角三角形的面积问题,即可得出结果.
解:如图所示,则C(0,3),D(4,3),E(3,0).
又∵O(0,0),A(1,3),B(4,1),
∴OC=DE=3,AC=1,CD=OE=4,BE=1,
∴AD=DC﹣AC=4﹣1=3,BD=DE﹣BE=3﹣1=2,
则四边形OCDE的面积=4×3=12,△ACO的面积=×3×1=1,5,△BEO的面积=×4×1=2,△ABD的面积=×3×2=3,
∴△ABO的面积=12﹣1.5﹣2﹣3=5.5.
练习册系列答案
相关题目