题目内容
【题目】如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N,
(1)若△CMN的周长为18cm,求AB的长.
(2)若∠MCN=48°,求∠ACB的度数.
【答案】(1)18cm;(2)114°
【解析】
(1)根据△ABC中,DM、EN分别垂直平分AC和BC,可知AM=CM,CN=BN,可知△CMN的周长即为AB的长.
(2)根据垂直平分线的性质可知,∠1=∠2,∠3=∠4,根据三角形的内角和定理,整体求出∠1+∠4的值,进而可得∠ACB的度数.
解:(1)∵DM、EN分别垂直平分AC和BC,
∴AM=CM,CN=BN,
∵△CMN的周长为18cm,即CM+CN+MN=18,
∴AM+BN+MN=AB=18cm.
∴AB=18cm.
(2)∵DM垂直平分AC,
∴∠1=∠2,
∵EN垂直平分BC,
∴∠3=∠4,
又∵∠1+∠2+∠3+∠4+48°=180°,
则2(∠1+∠4)=180°﹣48°=132°,
∠1+∠4==66°,
∴∠ACB=(∠1+∠4)+∠MCN=66°+48°=114°.
【题目】在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质——运用函数解决问题”的学习过程. 在画函数图象时,我们通过描点、平移、对称的方法画出了所学的函数图象. 同时,我们也学习了绝对值的意义,结合上面经历的学习过程,现在来解决下面的问题
在函数中,自变量的取值范围是全体实数,下表是与的几组对应值:
0 | 1 | 2 | 3 | ||||
y | … | 0 | 1 | 2 | 3 | 2 | … |
(1)根据表格填写:_______.
(2)化简函数解析式:
当时,_______;
当时,______.
(3)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并解决以下问题;
①该函数的最大值为_______.
②若为该函数图象上不同的两点,则________.
③根据图象可得关于的方程的解为_______.