题目内容
【题目】如图,点E、F分别是平行四边形ABCD的边BC、AD上的点,且BE=DF.
(1)求证:四边形AECF为平行四边形;
(2)若AE=BE,∠BAC=90°,判断四边形AECF的形状并证明.
【答案】(1)证明见解析;(2)四边形AECF是菱形.
【解析】
试题(1)通过平行四边形的判定定理“有一组对边平行且相等的四边形是平行四边形”得出结论:四边形AECF为平行四边形;(2)根据R△BAC中角与边间的关系证得△AEC是等腰三角形,即平行四边形AECF的邻边AE=EC,易证四边形AECF是菱形.
试题解析:(1)在ABCD中,AD//BC且AD=BC,
∵BE=DF,∴AF=CE.t
∴AF=CE且AF//CE
∴四边形AECF是平行四边形.
(2)四边形AECF是菱形. 理由如下:
∵AE=BE,∴EAB=EBA
∵BAC=900,∴CBA+BCA=900.
∴EAC=BAC. ∴AE="BE=CE" .
∴四边形AECF是菱形.
练习册系列答案
相关题目