题目内容
【题目】近年深圳进行高中招生制度改革,某初中学校获得保送(指标生)名额若干,现在九年级四位品学兼优的学生小斌(男)、小亮(男)、小红(女)、小丽(女)都获得保送资格,且机会均等.
(1)若学校只有一个名额,则随机选到小斌的概率是多少.
(2)若学校争取到两个名额,请用树状图或列表法求随机选到保送的学生恰好是一男一女的概率.
【答案】(1) ;(2)见解析;(3).
【解析】
试题(1)由现在九年级四位品学兼优的学生小斌(男)、小亮(男)、小红(女)、小丽(女)都获得保送资格,且机会均等,直接利用概率公式求解即可求得答案;
(2)首先根据题意列出表格,然后由表格即可求得所有等可能的结果与随机选到保送的学生恰好是一男一女的情况,再利用概率公式即可求得答案.
试题解析::(1)∵现在九年级四位品学兼优的学生小斌(男)、小亮(男)、小红(女)、小丽(女)都获得保送资格,且机会均等,
∴若学校只有一个名额,则随机选到小斌的概率是;
(2)列表得,
小斌 | 小亮 | 小红 | 小丽 | |
小斌 | (小斌,小亮) | (小斌,小红) | (小斌,小丽) | |
小亮 | (小亮,小斌) | (小亮,小红) | (小亮,小丽) | |
小红 | (小红,小斌) | (小红,小亮) | (小红,小丽) | |
小丽 | (小丽,小斌) | (小丽,小亮) | (小丽,小红) |
∵结果共有12种可能,随机选到保送的学生恰好是一男一女的有8种情况,
∴P(一男一女)=.
考点: 1.列表法与树状图法;2.概率公式.
【题目】在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分 组 | 频数 | 频率 |
第一组(0≤x<15) | 3 | 0.15 |
第二组(15≤x<30) | 6 | a |
第三组(30≤x<45) | 7 | 0.35 |
第四组(45≤x<60) | b | 0.20 |
(1)频数分布表中a=_____,b=_____,并将统计图补充完整;
(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?
(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?
【题目】某学习小组在研究函数y=x3﹣2x的图象与性质时,已列表、描点并画出了图象的一部分.
x | … | ﹣4 | ﹣3.5 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 3.5 | 4 | … |
y | … | ﹣ | ﹣ | 0 | ﹣ | ﹣ | ﹣ | … |
(1)请补全函数图象;
(2)方程x3﹣2x=﹣2实数根的个数为 ;
(3)观察图象,写出该函数的两条性质.