题目内容
【题目】如图Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC绕点A顺时针旋转到①,可得到点P1;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,…按此规律继续旋转,直到点P2012为止,则AP2012等于_____.
【答案】2012+671
【解析】
观察发现将Rt△ABC绕点A顺时针旋转,每旋转一次,AP的长度依次增加2,,1,且三次一循环,按此规律即可求解.
解:∵Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,
∴AB=2,BC=,
∴将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;
将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;
将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2++1=3+;
又∵2012÷3=670…2,
∴AP2012=670(3+)+2+=2012+671.
故答案为2012+671.
练习册系列答案
相关题目