题目内容
【题目】如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE,求证:
(1)△AEF≌△CEB;
(2)AF=2CD。
【答案】证明见解析.
【解析】试题分析:(1)由AD⊥BC,CE⊥AB,易得∠AFE=∠B,利用全等三角形的判定得△AEF≌△CEB;(2)由全等三角形的性质得AF=BC,由等腰三角形的性质“三线合一”得BC=2CD,等量代换得出结论.
试题解析:(1)证明:由于AB=AC,故△ABC为等腰三角形,∠ABC=∠ACB;
∵AD⊥BC,CE⊥AB,
∴∠AEC=∠BEC=90°,∠ADB=90°;
∴∠BAD+∠ABC=90°,∠ECB+∠ABC=90°,
∴∠BAD=∠ECB,
在Rt△AEF和Rt△CEB中
∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,
所以△AEF≌△CEB(ASA)
(2)∵△ABC为等腰三角形,AD⊥BC,
故BD=CD,
即CB=2CD,
又∵△AEF≌△CEB,
∴AF=CB=2CD。
练习册系列答案
相关题目