题目内容
【题目】已知:如图,D是△ABC的边BC上的一点,且CD=AB,∠BDA=∠BAD,AE是△ABD的中线.
⑴若∠B=60°,求∠C的值;
⑵求证:AD是∠EAC的平分线.
【答案】(1)∠C=30°;(2)详见解析.
【解析】
(1)根据已知条件得到∠BAD=∠BDA=60°,于是得到AB=AD,等量代换得到CD=AD,根据等腰三角形的性质得到∠DAC=∠C,推出∠BDA=∠DAC+∠C=2∠C,即可得到结论;
(2)证明:延长AE到M,使EM=AE,连接DM,推出△ABE≌△MDE,根据全等三角形的性质得到∠B=∠MDE,AB=DM,根据全等三角形的判定定理得到△MAD≌△CAD,根据全等三角形的性质得到∠MAD=∠CAD于是得到结论.
(1)∵∠B=60°,∠BDA=∠BAD,
∴∠BAD=∠BDA=60°,
∴AB=AD,
∵CD=AB,
∴CD=AD,
∴∠DAC=∠C,
∴∠BDA=∠DAC+∠C=2∠C,
∵∠BAD=60°,
∴∠C=30°;
(2)证明:延长AE到M,使EM=AE,连接DM,
在△ABE和△MDE中,
,
∴△ABE≌△MDE,
∴∠B=∠MDE,AB=DM,
∵∠ADC=∠B+∠BAD=∠MDE+∠BDA=∠ADM,
在△MAD与△CAD,
,
∴△MAD≌△CAD,
∴∠MAD=∠CAD,
∴AD是∠EAC的平分线.
练习册系列答案
相关题目
【题目】请你用学习“一次函数”时积累的经验和方法研究函数y=|x|的图象和性质,并解决问题.
(1)完成下列步骤,画出函数y=|x|的图象;
①列表、填空;
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 3 | 1 | 1 | 2 | 3 | … |
②描点;
③连线.
(2)观察图象,当x 时,y随x的增大而增大;
(3)根据图象,不等式|x|<x+的解集为 .