题目内容
【题目】已知等腰Rt△ABC中,∠ACB=90°,AC=BC,点G在BC上,连接AG,过C作CF⊥AG,垂足为点E,过点B作BF⊥CF于点F,点D是AB的中点,连接DE、DF.
(1)若∠CAG=30°,EG=1,求BG的长;
(2)求证:∠AED=∠DFE.
【答案】(1)2﹣2(2)证明见解析
【解析】
试题分析:(1)首先根据勾股定理求出CE的长,进而得到AC的长,因为AC=BC,所以BC可求,利用BH=BC﹣CG计算即可;
(2)连接CD,通过证明分别证明△ACE≌△CBF和△DCE≌△DBF,利用全等三角形的性质即可证明∠AED=∠DFE.
(1)解:∵∠CAG=∠FCB=30°,EG=1,sin30°==
∴CG=2,
∴CE==
∵sin30°=,
∴AC=2,
∴BC=2
∴BG=2﹣2;
(2)证明:连接CD,
在△ACE和△CBF中,
,
∴△ACE≌△CBF(AAS),
∴CE=BF,
∵等腰RT△ABC中,点D是AB的中点,
∴CD=BD,
∵CD⊥BD,
∠DCE+∠DPC=∠FBP+∠FPB=90°,
∴∠DCE=∠DBF,
在△DCE和△DBF中,
∴△DCE≌△DBF(SAS),
∴∠CED=∠BFD,
∵∠AEC=∠CFB=90°,
∴∠AED=∠DFE.
练习册系列答案
相关题目