题目内容
【题目】如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是,设P,Q出发t秒时,的面积为,已知y与t的函数关系的图象如图曲线OM为抛物线的一部分,则下列结论:;直线NH的解析式为;不可能与相似;当时,秒.其中正确的结论个数是( )
A.1B.2C.3D.4
【答案】C
【解析】
据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E时点Q到达点C,从而得到BC、BE的长度,即可判断①,再根据M、N是从10秒到12秒,可得ED的长度,, 当点P运动到点C时,面积变为0,可求得点H的坐标,求出解析式,即可判断②,当△ABE与△QBP相似时,点P在DC上,求出PQ的长,即可判断③,t=13时,PQ=5,此时tan∠PBQ==,即可判断④.
解:①据图(2)可得,当点P到达点E时点Q到达点C,
∵点P、Q的运动的速度都是1cm/s,
∴BC=BE=10cm,S△BCE= BC·AB=30,
∴AB=6,故①正确;
②根据1012秒面积不变,可得ED=2,
当点P运动到点C时,面积变为0,此时点P走过的路程为BE+ED+DC=18,
故点H的坐标为(18,0),
设直线NH的解析式为y=kx+b,
将点H(18,0),点N(12,30)代入可得:,
解得:.
故直线NH的解析式为:y=5t+90,故②正确;
③当△ABE与△QBP相似时,点P在DC上,如图2所示:
∵tan∠PBQ=tan∠ABE=,
∴,
∵BQ=10,
∴PQ=7.5,
∴PQ>CD,
∴△ABE与△QBP不可能相似,故③正确;
④t=13时,PQ=18-13=5,
此时tan∠PBQ==,
∴∠PBQ≠30,故④错误,
综上可得①②③正确,共3个.
故选C.
【题目】某蔬菜市场为指导某种蔬菜的生产和销售,对往年的市场行情和生产情况进行了调查,提供的信息如下:
信息1:售价和月份满足一次函数关系,如下表所示.
月份 | … | 3 | 6 | … |
售价 | … | 5 | 3 | … |
信息2:成本和月份满足二次函数关系,并且知道该种蔬菜在6月成本达到最低为1元/千克,9月成本为4元/千克.
根据以上信息回答下列问题:
(1)在7月,这种蔬菜的成本是多少元每千克?
(2)在过去的一年中,某商家平均每天卖出该种蔬菜,则哪个月的利润最大,最大利润为多少?(一个月按30天计算)