题目内容
【题目】如图,在平行四边形ABCD中,AB=4cm,BC=6cm,∠B=60°,G是CD的中点,E是边AD上的动点(E不与A、D重合),且点E由A向D运动,速度为1cm/s,EG的延长线与BC的延长线交于点F,连接CE、DF,设点E的运动时间为
(1)求证:无论为何值,四边形CEDF都是平行四边形;
(2)①当s时,CE⊥AD;
②当时,平行四边形CEDF的两条邻边相等.
【答案】(1)见解析;(2)①3.5;②2.
【解析】
(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;
(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,即可得出答案;
②求出△CDE是等边三角形,推出CE=DE,即可得出答案.
(1)四边形ABCD是平行四边形,
∴CF∥ED,
∴∠FCD=∠GCD,
又∠CGF=∠EGD.
G是CD的中点,
CG=DG,
在△FCG和△EDG中,
∵,
∴△CFG≌△EDG(ASA),
∴FG=EG,
∵CG=DG,
∴四边形CEDF是平行四边形;
(2)①当t=3.5s时,CE⊥AD,
理由是:过A作AM⊥BC于M,
∵∠B=60°,AB=3,
∴BM=1.5,
∵四边形ABCD是平行四边形,
∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,
∵AE=3.5,
∴DE=1.5=BM,
在△MBA和△EDC中,
∵,
∴△MBA≌△EDC(SAS),
∴∠CED=∠AMB=90°,
即CE⊥AD,
故答案为:3.5;
②当t=2s时,平行四边形CEDF的两条邻边相等,
理由是:∵AD=5,AE=2,
∴DE=3,
∵CD=3,∠CDE=60°,
∴△CDE是等边三角形,
∴CE=DE,
即平行四边形CEDF的两条邻边相等,
故答案为:2.
练习册系列答案
相关题目