题目内容
【题目】如图,抛物线y=﹣ x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
【答案】
(1)
解:把A(﹣1,0),C(0,2)代入y=﹣ x2+mx+n得 ,解得 ,
∴抛物线解析式为y=﹣ x2+ x+2
(2)
解:存在.
抛物线的对称轴为直线x=﹣ = ,
则D( ,0),
∴CD= = = ,
如图1,当CP=CD时,则P1( ,4);
当DP=DC时,则P2( , ),P3( ,﹣ ),
综上所述,满足条件的P点坐标为( ,4)或( , )或( ,﹣ )
(3)
解:当y=0时,=﹣ x2+ x+2=0,解得x1=﹣1,x2=4,则B(4,0),
设直线BC的解析式为y=kx+b,
把B(4,0),C(0,2)代入得 ,解得 ,
C的解析式为y=﹣ x+2,
设E(x,﹣ x+2)(0≤x≤4),则F(x,﹣ x2+ x+2),
∴FE=﹣ x2+ x+2﹣(﹣ x+2)=﹣ x2+2x,
∵S△BCF=S△BEF+S△CEF= 4EF=2(﹣ x2+2x)=﹣x2+4x,
而S△BCD= ×2×(4﹣ )= ,
∴S四边形CDBF=S△BCF+S△BCD
=﹣x2+4x+ (0≤x≤4),
=﹣(x﹣2)2+ .
当x=2时,S四边形CDBF有最大值,最大值为 . ,此时E点坐标为(2,1)
【解析】(1)直接把A点和C点坐标代入y=﹣ x2+mx+n得m、n的方程组,然后解方程组求出m、n即可得到抛物线解析式;(2)先利用抛物线对称轴方程求出抛物线的对称轴为直线x=﹣ ,则D( ,0),则利用勾股定理计算出CD= ,然后分类讨论:如图1,当CP=CD时,利用等腰三角形的性质易得P1( ,4);当DP=DC时,易得P2( , ),P3( ,﹣ );(3)先根据抛物线与x轴的交点问题求出B(4,0),再利用待定系数法求出直线BC的解析式为y=﹣ x+2,利用一次函数图象上点的坐标特征和二次函数图象上点的坐标特征,设E(x,﹣ x+2)(0≤x≤4),则F(x,﹣ x2+ x+2),则FE=﹣ x2+2x,由于△BEF和△CEF共底边,高的和为4,则S△BCF=S△BEF+S△CEF= 4EF=﹣x2+4x,加上S△BCD= ,所以S四边形CDBF=S△BCF+S△BCD=﹣x2+4x+ (0≤x≤4),然后根据二次函数的性质求四边形CDBF的面积最大,并得到此时E点坐标.