题目内容
如图,已知点O为Rt△ABC斜边上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E,与AC相交于点D,连接AE.
(1)求证:AE平分∠CAB;
(2)当AE=EC,AC=3时,求⊙O的半径.
(1)求证:AE平分∠CAB;
(2)当AE=EC,AC=3时,求⊙O的半径.
(1)证明:连接OE,
∵⊙O与BC相切于点E,
∴OE⊥BC,
∵AB⊥BC,
∴AB∥OE,
∴∠2=∠AEO.
∵OA=OE,
∴∠1=∠AEO,
∴∠1=∠2,即AE平分∠CAB;
(2)由(1)知,∠1=∠2、
∵AE=EC,
∴∠1=∠C.
∴∠1+∠2+∠C=3∠C=90°,
∴∠C=30°,
∴OE=
OC,即OE=
(3-OE),
解得,OE=1,即该圆的半径是1.
∵⊙O与BC相切于点E,
∴OE⊥BC,
∵AB⊥BC,
∴AB∥OE,
∴∠2=∠AEO.
∵OA=OE,
∴∠1=∠AEO,
∴∠1=∠2,即AE平分∠CAB;
(2)由(1)知,∠1=∠2、
∵AE=EC,
∴∠1=∠C.
∴∠1+∠2+∠C=3∠C=90°,
∴∠C=30°,
∴OE=
1 |
2 |
1 |
2 |
解得,OE=1,即该圆的半径是1.
练习册系列答案
相关题目