题目内容
【题目】如图,在菱形ABCD中,若∠B=60°,点E、F分别在AB、AD上,且BE=AF,则∠AEC+∠AFC的度数等于( )
A.120°
B.140°
C.160°
D.180°
【答案】D
【解析】解:连接AC,
∵在菱形ABCD中,∠B=60°,
∴AC=AB=BC=CD=AD,
∵BE=AF,
∴AE=DF,
∵∠B=60°,AC是对角线,
∴∠BAC=60°,
∴∠BAC=∠D=60°,
∴△ACE≌△CDF,
∴EC=FC.∠ACE=∠DCF,
∵∠DCF+∠ACF=60°,
∴∠ACE+∠ACF=60°,
∴△ECF是等边三角形.
故可得出∠ECF=60°,又∠EAF=120°,
∴∠AEC+∠AFC=360°﹣(60°+120°)=180°.
故选D.
【考点精析】利用菱形的性质对题目进行判断即可得到答案,需要熟知菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.
练习册系列答案
相关题目
【题目】某公司有A、B两种型号的客车共15辆,它们的载客量,每天的租金和车辆数如下表所示,已知在15辆客车都坐满的情况下,共载客570人
A型号客车 | B型号客车 | |
载客量(人/辆) | 45 | 30 |
租金(元/辆) | 400 | 280 |
车辆数(辆) | a | b |
(1)求表中a,b的值;
(2)某中学计划租用A、B两种型号的客车共5辆,同时送七年级师生到基地参加社会实践活动,已知该中学租车的总费用不超过1900元. ①求最多能租用多少辆A型号客车?
②若七年级的师生共有195人,请写出所有可能的租车方案,并确定最省钱的租车方案.