题目内容
如图,在△ABC中,∠A=40°,∠B=72°,CD是AB边上的高;CE是∠ACB的平分线,DF⊥CE于F,求∠BCE和∠CDF的度数.
解:∵∠A+∠B+∠ACB=180°,∠A=40°,∠B=72°,
∴∠ACB=68°,
∵CE平分∠ACB,
∴∠BCE=∠ACB=×68°=34°,
∵CD⊥AB,
∴∠CDB=90°,
∵∠B=72°,
∴∠BCD=90°-72°=18°,
∴∠FCD=∠BCE-∠BCD=16°,
∵DF⊥CE,
∴∠CFD=90°,
∴∠CDF=90°-∠FCD=74°,
即∠BCE=34°,∠CDF=74°.
分析:求出∠ACB,根据角平分线定义求出∠BCE即可,根据三角形内角和定理求出∠BCD,代入∠FCD=∠BCE-∠BCD,求出∠FCD,根据三角形的内角和定理求出∠CDF即可.
点评:本题考查了三角形的内角和定理,垂直定义,角平分线定义等知识点,关键是求出各个角的度数,题目比较典型,难度适中.
∴∠ACB=68°,
∵CE平分∠ACB,
∴∠BCE=∠ACB=×68°=34°,
∵CD⊥AB,
∴∠CDB=90°,
∵∠B=72°,
∴∠BCD=90°-72°=18°,
∴∠FCD=∠BCE-∠BCD=16°,
∵DF⊥CE,
∴∠CFD=90°,
∴∠CDF=90°-∠FCD=74°,
即∠BCE=34°,∠CDF=74°.
分析:求出∠ACB,根据角平分线定义求出∠BCE即可,根据三角形内角和定理求出∠BCD,代入∠FCD=∠BCE-∠BCD,求出∠FCD,根据三角形的内角和定理求出∠CDF即可.
点评:本题考查了三角形的内角和定理,垂直定义,角平分线定义等知识点,关键是求出各个角的度数,题目比较典型,难度适中.
练习册系列答案
相关题目