题目内容
如图,在锐角△ABC中,AB=4
,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是______.
2 |
如图,在AC上截取AE=AN,连接BE.
∵∠BAC的平分线交BC于点D,
∴∠EAM=∠NAM,
在△AME与△AMN中,
,
∴△AME≌△AMN(SAS),
∴ME=MN.
∴BM+MN=BM+ME≥BE.
∵BM+MN有最小值.
当BE是点B到直线AC的距离时,BE⊥AC,
又AB=4
,∠BAC=45°,此时,△ABE为等腰直角三角形,
∴BE=4,
即BE取最小值为4,
∴BM+MN的最小值是4.
故答案为:4.
∵∠BAC的平分线交BC于点D,
∴∠EAM=∠NAM,
在△AME与△AMN中,
|
∴△AME≌△AMN(SAS),
∴ME=MN.
∴BM+MN=BM+ME≥BE.
∵BM+MN有最小值.
当BE是点B到直线AC的距离时,BE⊥AC,
又AB=4
2 |
∴BE=4,
即BE取最小值为4,
∴BM+MN的最小值是4.
故答案为:4.
练习册系列答案
相关题目