题目内容
【题目】完成下列证明:
如图,已知DE⊥AC于点E,BC⊥AC于点C,FG⊥AB于点G,∠1=∠2,求证:CD⊥AB.
证明:∵DE⊥AC,BC⊥AC(已知),
∴DE∥(),
∴∠2=(两直线平行,内错角相等),
∵∠1=∠2,(已知),
∴∠1=(),
∴GF∥CD(),
∵FG⊥AB(已知),
∴CD⊥AB.
【答案】BC;在同一平面内,垂直于同一直线的两直线平行;∠BCD;∠BCD;等量代换;同位角相等,两直线平行
【解析】证明:∵DE⊥AC,BC⊥AC(已知),
∴DE∥BC( 在同一平面内,垂直于同一直线的两直线平行),
∴∠2=∠BCD(两直线平行,内错角相等),
∵∠1=∠2,(已知),
∴∠1=∠BCD(等量代换),
∴GF∥CD(同位角相等,两直线平行),
∵FG⊥AB(已知),
∴CD⊥AB,
所以答案是:1.BC;2在同一平面内,垂直于同一直线的两直线平行;3.∠BCD;4.∠BCD;5.等量代换;6.同位角相等,两直线平行.
【考点精析】解答此题的关键在于理解平行线的判定与性质的相关知识,掌握由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质.
练习册系列答案
相关题目