题目内容

如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为  
首先根据已知得出△ABC的高以及B′E的长,利用勾股定理求出BD即可.
解:过点A作AQ⊥BC于点Q,
∵AB=AC,BC=8,tanC=
=,QC=BQ=4,
∴AQ=6,
∵将△ABC沿直线l翻折后,点B落在边AC的中点处,
过B′点作B′E⊥BC于点E,

∴B′E=AQ=3,
=,             ∴EC=2,
设BD=x,则B′D=x,
∴DE=8﹣x﹣2=6﹣x,
∴x2=(6﹣x)2+32
解得:x=
直线l与边BC交于点D,那么BD的长为:
故答案为:
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网