题目内容
【题目】关于x的方程(k﹣1)x|2k﹣1|+3=0是一元一次方程,那么k= .
【答案】0【解析】解:根据题意得|2k﹣1|=1且k﹣1≠0,
解得k=0.
故答案是:0.
【题目】已知在△ABC中,AC=BC,AC⊥BC于点C,过点C作直线EF∥AB,点D在直线EF上,连接BD,过点D作GD⊥BD,交直线AC于点H,连接BG.
(1)如图1所示,当点D在射线CF上,点H在射线AC上时,连接BH,过点D作MD⊥CD,交CB的延长线于点M. 求证:∠GBH+∠G=∠M;
(2)如图2所示,当点D在射线CE上,点H在射线CA上时,试判断并证明DH与BD之间的数量关系.
图1 图2
【题目】某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.
(1)请你用直尺和圆规补全这个输水管道的圆形截面(保留作图痕迹);
(2)若这个输水管道有水部分的水面宽AB=8cm,水面最深地方的高度为2cm,求这个圆形截面的半径.
【题目】先阅读理解下面的例题,再按要求解答下列问题:
例题:求代数式y2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4=(y+2)2+4
∵(y+2)2≥0
∴(y+2)2+4≥4
∴y2+4y+8的最小值是4.
(1)求代数式m2+m+4的最小值;
(2)求代数式4﹣x2+2x的最大值;
(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?
【题目】李明准备进行如下操作试验,把一根长40 cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.
(1)要使这两个正方形的面积之和等于58 cm2,李明应该怎么剪这根铁丝?
(2)李明认为这两个正方形的面积之和不可能等于48 cm2,你认为他的说法正确吗?请说明理由.
【题目】若2a+b=﹣3,2a﹣b=2,则4a2﹣b2=_____.
【题目】如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间的函数关系可用图象表示为( )
A. B. C. D.
【题目】已知:如图,Rt△ABC中,∠ABC=90°,AD平分∠BAC交BC于D.
(1)用尺规作⊙O,使⊙O过A、D两点,且圆心O在AC上.(保留作图痕迹,不写作法)
(2)求证:BC与⊙O相切;
(3)设圆O交AB于点E,若AE=2,CD=2BD.求线段BE的长和弧DE的长.
【题目】如图,△ABC为等边三角形,D为BC延长线上的一点,以AD为边向形外作等边△ADE,连接CE.(1) 求证:△ACE≌△ABD;
(2) 在点D运动过程中,∠DCE的度数是否发生变化?若不变化,求它的度数;若变化,说明理由;
(3) 若∠BAE=150°,△ABD的面积为6,求四边形ACDE的面积.
备用图