题目内容

【题目】已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.

(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.

【答案】
(1)解:因为二次函数y=x2+bx+c的图象经过A(﹣3,0),D(﹣2,﹣3),所以

解得

所以一次函数解析式为y=x2+2x﹣3


(2)解:∵抛物线对称轴x=﹣1,D(﹣2,﹣3),C(0,﹣3),

∴C、D关于x轴对称,连接AC与对称轴的交点就是点P,

此时PA+PD=PA+PC=AC= = =3


(3)解:设点P坐标(m,m2+2m﹣3),

令y=0,x2+2x﹣3=0,

x=﹣3或1,

∴点B坐标(1,0),

∴AB=4

∵SPAB=6,

4|m2+2m﹣3|=6,

∴m2+2m﹣6=0,m2+2m=0,

∴m=0或﹣2或1+ 或1﹣

∴点P坐标为(0,﹣3)或(﹣2,﹣3)或(1+ ,3)或(1﹣ ,3).


【解析】(1)把A、D两点坐标代入二次函数y=x2+bx+c,解方程组即可解决.(2)利用轴对称找到点P,用勾股定理即可解决.(3)根据三角形面积公式,列出方程即可解决.
【考点精析】解答此题的关键在于理解抛物线与坐标轴的交点的相关知识,掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.,以及对轴对称-最短路线问题的理解,了解已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网