题目内容
【题目】已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C、D(如图).
(1)求证:AC=BD;
(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,求AC的长.
【答案】(1)证明见解析;(2)8-2.
【解析】试题分析:(1)过O作OE⊥AB,根据垂径定理得到AE=BE,CE=DE,从而得到AC=BD;
(2)由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,再根据勾股定理求出CE及AE的长,根据AC=AE﹣CE即可得出结论.
试题解析:(1)作OE⊥AB,
∵AE=BE,CE=DE,
∴BE﹣DE=AE﹣CE,即AC=BD;
(2)∵由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,∴OE=6,
∴CE=,
AE=,
∴AC=AE﹣CE=8﹣2.
练习册系列答案
相关题目