题目内容
【题目】甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图象如图所示,请根据图象回答下列问题:
(1)甲先出发______小时后,乙才出发;大约在甲出发______小时后,两人相遇,这时他们离A地_______千米.
(2)两人的行驶速度分别是多少?
(3)分别写出表示甲、乙的路程y(千米)与时间x(小时)之间的函数表达式(不要求写出自变量的取值范围).
【答案】(1)3;4;40.(2)甲的速度10km/h;乙的速度40km/h.(3)甲的函数表达式:y=10x;乙的函数表达式:y=40x120.
【解析】
(1)结合图象,由速度=路程÷时间,即可得出结论,求出甲、乙的速度,根据待定系数法,可求出乙的函数表达式,结合甲的速度依据甲的图象过原点,可得出甲的函数表达式;
(2)(3)由(1)所求即可写出结论.
(1)根据图像可得:
甲的速度:80÷8=10km/h;
乙的速度:80÷(53)=40km/h.
∵甲的速度为10km/h,且过原点(0,0),
∴甲的函数表达式:y=10x;
设乙的函数表达式为y=kx+b,
∵点(3,0)和(5,80)在乙的图象上,
∴有,解得:.
故乙的函数表达式:y=40x120.
由图可得甲先出发3小时后,乙才出发;
令y=10x=40x120,解得x=4,此时y=40,
∴在甲出发4小时后,两人相遇,这时他们离A地40千米.
故答案为:3;4;40.
(2)由(1)得甲的速度10km/h;乙的速度40km/h.
(3)由(1)甲的函数表达式:y=10x;乙的函数表达式:y=40x120.
【题目】重庆市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=x+5,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=-x+(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:
z(元/m2) | 50 | 52 | 54 | 56 | 58 | … |
x(年) | 1 | 2 | 3 | 4 | 5 | … |
(1)求出z与x的函数关系式;
(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;
(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.
(参考数据:,,)
【题目】2017年12月,旗团委号召各校组织开展捐赠衣物的“暖冬行动”某校七年级六个班参加了这次捐赠活动,若每班捐赠衣物以100件为基准,超过的件数用正数表示,不足的件数用负数表示,记录如下:
班级 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
人数 | 40 | 43 | 45 | 44 | 40 | 38 |
件数 |
捐赠衣物最多的班比最少的班多多少件?
该校七年级学生共捐赠多少件衣物?该校七年级学生平均每人捐赠多少件衣物?