题目内容
【题目】如图(1),∠AOB=45°,点P、Q分别是边OA,OB上的两点,且OP=2cm.将∠O沿PQ折叠,点O落在平面内点C处.
(1)当PC∥QB时,OQ=;
(2)当PC⊥QB时,求OQ的长.
(3)当折叠后重叠部分为等腰三角形时,求OQ的长.
【答案】
(1)2cm
(2)解:当PC⊥QB时,分两种情况:
(i)如图1所示:
设OQ=xcm,
∵∠O=45°,
∴△OPM是等腰直角三角形,
∴OM= OP= ,
∴QM= ﹣x,
由折叠的性质得:∠C=∠O=45°,CQ=OQ=x,
∴△CQM是等腰直角三角形,
∴QC= QM
∴x= ( ﹣x),
解得:x=2 ﹣2,
即OQ=2 ﹣2;
(ii)如图2所示:
同(i)得:OQ=2 +2;
综上所述:当PC⊥QB时,OQ的长为2 ﹣2,或2 +2
(3)
解:当折叠后重叠部分为等腰三角形时,符合条件的点Q共有5个;
①点C在∠AOB的内部时,四边形OPCQ是菱形,OQ=OP=2cm;
②当点C在∠AOB的一边上时,△OPQ是等腰直角三角形,OQ= 或2 ;
③当点C在∠AOB的外部时,分两种情况:
(i)如图3所示:
PM=PQ,则∠PMQ=∠PQM=∠O+∠OPQ,
由折叠的性质得:∠OPQ=∠MPQ,
设∠OPQ=∠MPQ=x,
则∠PMQ=∠PQM=45°+x,
在△OPM中,由三角形内角和定理得:45°+x+x+45°+x=180°,
解得:x=30°,
∴∠OPQ=30°,
作QN⊥OP于N,设ON=a,
∵∠O=45°,
则QN=ON=a,OQ= a,PN= QN= a,
∵ON+PN=OP,
∴a+ a=2,
解得:a= ﹣1,
∴OQ= ( ﹣1)= ﹣ ;
(ii)如图4所示:
PQ=MQ,作QN⊥OA于N,
同①得:OQ= + ;
综上所述:当折叠后重叠部分为等腰三角形时,OQ的长为2cm或(2 ﹣2,)cm或(2 +2)cm或( ﹣ )cm或( + )cm.
【解析】解:(1)当PC∥QB时,∠O=∠CPA,
由折叠的性质得:∠C=∠O,OP=CP,
∴∠CPA=∠C,
∴OP∥QC,
∴四边形OPCQ是平行四边形,
∴四边形OPCQ是菱形,
∴OQ=OP=2cm;
所以答案是:2cm;