题目内容
【题目】如图,在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:
(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.
(2)三角板绕点P旋转,△PCE是否能成为等腰三角形?若能,指出所有情况(即写出△PCE为等腰三角形时BE的长);若不能,请说明理由.
【答案】(1)PD=PE,理由见解析;(2)BE=0,2-,2+或1.
【解析】
(1)PD=PE,通过证△DPC≌△EPB,可得结论
(2)分三种情况讨论①当PC=PE=时;②当PC=CE=时;③当PE=EC时,可求解.
解:(1)PD=PE
如图
连接PB
∵△ABC是等腰直角三角形,P是AB中点
∴CP⊥AB,∠ACP=∠BCP=∠ACB=45°
∴∠ACP=∠B=∠BCP=45°
∴BP=CP
∵∠DPC+∠CPE=90°=∠BPE+∠CPE
∴∠DPC=∠EPB,BP=CP,∠ACP=∠B
∴△DPC≌△EPB
∴DP=PE
(2)∵AC=BC=2,∠C=90°
∴AB=2
∴AP=BP=CP=
△PCE是等腰三角形
当PC=PE=时,即B,E重合,BE=0
当PC=CE=时,E在线段BC上,则BE=2﹣
E在线段BC的延长线上,则BE=2+
当PE=EC,且∠PCB=45°
∴∠PEC=90°
∴EC=1
∴BE=1
【题目】在生活与工作都离不开手机和电脑的今天,青少年近视、散光等眼问题日趋严重,为宣传2018全国爱眼日(6月6日),增强大众近视防控意识,某青少年视力矫正中心举办了主题为“永康降度还您一双明亮的眼睛”的降度明星大赛,现根据大赛公布的结果,将所有参赛孩子双眼降度之和(含近视和散光)情况绘制成了如下的统计表:
所降度数(度) | 100 | 200 | 300 | 400 | 500 | 600 |
人数(人) | 12 | 18 | 24 | 4 | 1 | 1 |
(1)求参加降度明星大赛的孩子共有多少人?
(2)求出所有参赛孩子所降度数的众数、中位数和平均数.