题目内容
【题目】在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):
方案一:提供8000元赞助后,每张票的票价为50元;
方案二:票价按图中的折线OAB所表示的函数关系确定.
(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?
(2)求方案二中y与x的函数关系式;
(3)至少买多少张票时选择方案一比较合算?
【答案】(1)14000,13200; (2)y=60x+6000.(3)200.
【解析】
试题(1)方案一中,总费用y=8000+50x,代入x=120求得答案;由图可知方案二中,当x=120时,对应的购票总价为13200元;
(2)分段考虑当0<x≤100时,当x≥100时,设出一次函数解析式,把其中两点的坐标代入即可求得相应的函数解析式;
(3)由(1)(2)的解析式建立不等式,求得答案即可.
试题解析:(1)若购买120张票时,
方案一购票总价:y=8000+50x=14000元,
方案二购票总价:y=13200元.
(2)当0<x≤100时,
设y=kx,代入(100,12000)得
12000=100k,
解得k=120,
∴y=120x;
当x>100时,
设y=ax+b,代入(100,12000)、(120,13200)得
,
解得,
∴y=60x+6000.
(3)由(1)可知,要选择方案一比较合算,必须超过120张,由此得
8000+50x≤60x+6000,
解得x≥200,
所以至少买200张票时选择方案一比较合算.
【题目】某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以13元/千克的价格销售,那么每天可获取利润750元.
【利润=(销售价-进价)销售量】
(1)请根据他们的对话填写下表:
销售单价x(元/kg) | 10 | 11 | 13 |
销售量y(kg) |
(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;
(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?