题目内容
【题目】如图,AB是⊙O的直径,P是BA延长线上一点,C是⊙O上一点,∠PCA=∠B.求证:PC是⊙O的切线.
【答案】证明:连接OC.∵OB=OC,
∴∠OCB=∠B.
∵∠PCA=∠B,
∴∠OCB=∠PCA.
∵AB是直径,
∴∠ACO+∠OCB=90°,
∴∠ACO+∠PCA=90°,
∴OC⊥PC.
又∵C是⊙O上一点,
∴PC是⊙O的切线.
【解析】要证PC是⊙O的切线,只要连接OC,再证∠PCO=90°即可.
【考点精析】本题主要考查了圆周角定理和切线的判定定理的相关知识点,需要掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半;切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线才能正确解答此题.
练习册系列答案
相关题目