题目内容
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,D为边BC上的一点,连接AD,过点C作AD的垂线,交过点B与边AC平行的直线于点E,CE交边AB于点F.
(1)求∠EBF的度数;
(2)求证:△ACD≌△CBE;
(3)若AD平分∠BAC,判断△BEF的形状,并说明理由.
【答案】(1)∠EBF=45°;(2)证明见详解;(3)△BEF是等腰三角形.
【解析】
(1)运用等腰三角形的性质与平行线的性质即可得出结论;
(2)根据“角边角”可证明出△ACD≌△CBE;
(3)根据△ACD≌△CBE可得∠E=∠ADC=67.5°,由(1)可知∠EBF=45°,即可得出∠BFE=67.5°,则∠E=∠BFE,即可证明得△BEF是等腰三角形.
(1)解:∵∠ACB=90°,AC=BC,
∴∠ABC=∠CAB=45°,
∵BE∥AC,
∴∠CBE+∠ACB=180°,
∴∠CBE=90°,
∴∠EBF=45°.
(2)证明:∵AD⊥CE,
∴∠ACE+∠CAD=90°,
∵∠ACB=90°,
∴∠ACE+∠BCE=90°,
∴∠CAD=∠BCE,
∵AC=BC,∠ACB=∠CBE=90°,
∴△ACD≌△CBE;
(3)解:△BEF是等腰三角形,
理由如下:∵AD平分∠BAC,
∴∠CAD=22.5°,
∵△ACD≌△CBE,
∴∠E=∠ADC=67.5°,
由(1)可知,∠EBF=45°,
∴∠BFE=180°-45°-67.5°=67.5°,
∴∠E=∠BFE,
∴△BEF是等腰三角形.
练习册系列答案
相关题目