题目内容
【题目】如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4).
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标A1 ________________.
(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标A2__________________.
(3) △ABC是否为直角三角形?答_________(填是或者不是).
(4)利用格点图,画出BC边上的高AD,并求出AD的长,AD=_____________.
【答案】 (2.-4) (-2,4) 不是
【解析】试题分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标;
(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,即△A2B2C2与△A1B1C1关于点O成中心对称,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2;
(3)根据勾股定理逆定理解答即可;
(4)连接BD,过点A作AH∥BD交BC与点H,然后利用面积法求AH的长度即可.
解:(1)如图所示:点A1的坐标(2,-4);
(2)如图所示,点A2的坐标(-2,4);
(3)∵AC2=32+12=10, AB2=22+12=5, BC2=42+12=17,
∴AC2+ AB2≠ BC2,
∴△ABC不是直角三角形;
(4)连接BD,过点A作AH∥BD交BC与点H.
∵BB1=BE, ∠BB1D=∠BEC,B1D=CE,
∴△BB1D=△BEC,
∴∠CBE=∠DBB1.
∵∠DBE=∠DBB1=90°,
∴∠DBE=∠CBE =90°,
∴BD⊥BC,
∴AH⊥BC.
∵BC2=42+12=17,
∴BC=.
∵S△ABC=4×2-×2×1-×3×1-×4×1=,
∴BC·AH=,
∴AH=7,
∴AH= .