题目内容
【题目】如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是( )
A.
B.2
C.3
D.2
【答案】A
【解析】解:∵∠ACB=90°,∠ABC=30°,AC=2,
∴∠A=90°﹣∠ABC=60°,AB=4,BC=2 ,
∵CA=CA1,
∴△ACA1是等边三角形,AA1=AC=BA1=2,
∴∠BCB1=∠ACA1=60°,
∵CB=CB1,
∴△BCB1是等边三角形,
∴BB1=2 ,BA1=2,∠A1BB1=90°,
∴BD=DB1= ,
∴A1D= = .
所以答案是:A.
【考点精析】通过灵活运用含30度角的直角三角形和勾股定理的概念,掌握在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2即可以解答此题.
练习册系列答案
相关题目