题目内容
【题目】如图,在Rt△ABC中,∠C=90°,∠ABC=30°,点D是BC边上的点,CD=1,将△ACD沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则PB+PE的最小值是________.
【答案】3.
【解析】
根据翻折变换的性质可得点C、E关于AD对称,再根据轴对称确定最短路线问题,BC与AD的交点D即为使PB+PE的最小值的点P的位置,然后根据直角三角形两锐角互余求出∠BAC=60°,再求出∠CAD=30°,然后解直角三角形求解即可.
∵将△ACD沿直线AD翻折,点C落在AB边上的点E处,
∴点C、E关于AD对称,
∴点D即为使PB+PE的最小值的点P的位置,PB+PE=BC,
∵∠C=90°,∠ABC=30°,
∴∠BAC=90°-30°=60°,
∴∠CAD=∠BAC=×60°=30°,
∴AC=CD=,
BC=AC=×=3.
故答案为:3.
练习册系列答案
相关题目
【题目】小明做投掷骰子(质地均匀的正方体)实验,共做了50次试验,将记录的数据进行整理,绘制了如下的统计表:
朝上的点数 | 1 | 2 | 3 | 4 | 5 | 6 |
出现的次数 | 7 | 8 | 9 | 9 | 7 | |
频率 | 0.14 | 0.20 | 0.18 | 0.18 | 0.14 |
(1)上表中,=______,=_______.
(2)正在做掷骰子实验的小颖和小明准备做一个游戏:两人分别掷一次骰子,谁掷出的骰子朝上的点数最大谁就获胜.现小明先掷,掷出的点数为4,请分别求出小明与小颖获胜的概率.