题目内容
【题目】如图,△ABC中,∠ACB=90°,∠ABC=60°,AB=8cm,D是AB的中点.现将△BCD沿BA方向平移1cm,得到△EFG,FG交AC于H,FE交AC于M点.
(1)求证:AG=GH;
(2)求四边形GHME的面积.
【答案】(1)证明见解析;(2).
【解析】分析:(1)根据平移的性质可得△BCD≌△EFG,FG∥CD,EF∥CB,DG=EB=1,再根据直角三角形的性质可得AD=CD=BD=AB=×8=4,然后再根据等边对等角,以及平行线的性质可得AG=GH;(2)过C作CN⊥AB于N,证明△BCD为等边三角形,利用勾股定理计算出CN,根据直角三角形的性质计算出MF,HM,再表示出△FHM和△FGE的面积,求差即可.
本题解析:
(1)证明:将△BCD沿BA方向平移得到△EFG,
∴△BCD≌△EFG,FG∥CD,EF∥CB,DG=EB=1,
∵∠ACB=90°,D是AB的中点,
∴AD=CD=BD=AB=×8=4,
∴∠DAC=∠ACD,
∵FG∥CD,
∴∠AFG=∠ACD,
∴∠AHG=∠DAC,
∴AG=GH;
(2)解:如图:过C作CN⊥AB于N,
∵∠ABC=60°,∠ACB=90°,
∴∠A=30°,
∵BC=AB=×8=4,
∵∠ABC=60°,CD=BD,
∴△BCD为等边三角形,
∴NB=BD=2,
∴CN=,
∵DG=1,AD=4,
∴GH=AG=3,
∴FH=1,
∵∠A=30°,
∴∠A=30°=∠AHG=∠FHM=30°,
∵FE∥CB,∠ACB=90°,
∴MF=,
∴HM=.
∴S△EFG=S△BCD=×4×2=4,
S△MFH=××=,
∴S四边形GHME=4﹣=(cm2).
练习册系列答案
相关题目