题目内容

【题目】综合与实践

问题情境

在学习了《勾股定理》和《实数》后,某班同学以已知三角形三边的长度,求三角形面积为主题开展了数学活动.

操作发现

毕达哥拉斯小组的同学想到借助正方形网格解决问题.如图16×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.在图1中画出△ABC,其顶点ABC都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DEEF分别经过点CA,他们借助此图求出了△ABC的面积.

1)在图1中,所画的△ABC的三边长分别是AB= BC= AC= △ABC的面积为 .

实践探究

2)在图2所示的正方形网格中画出△DEF(顶点都在格点上),使DE=DF= EF=,并写出△DEF的面积.

继续探究

秦九韶小组的同学想到借助曾经阅读的数学资料: 已知三角形的三边长分别为abc,求其面积,对此问题中外数学家曾经进行过深入研究.古希腊的几何学家海伦(Heron,约公元50年),在他的著作《度量》一书中,给出了求其面积的海伦公式:

我国南宋时期数学家秦九韶(约1202 ~1261),给出了著名的秦九韶公式:

3)一个三角形的三边长依次为,请你从上述材料中选用适当的公式 求这个三角形的面积.(写出计算过程)

【答案】1;(2)图见解析;DEF的面积为4;(3.

【解析】

1)利用勾股定理计算ABC的三边长;利用ABC所在正方形的面积减去周围直角三角形的面积可求其面积;

2)仿照毕达哥拉斯小组的方法利用勾股定理在正方形网格中画出DEF,并利用割补法求其面积即可;

3)利用秦九韶公式,代入求值即可.

解:(1

ABC的面积=

故答案为:

2DEF如图所示,

DEF的面积=

3)将代入秦九韶公式,

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网