题目内容
如图,等腰梯形ABCD中,AD∥BC,AB=DC,对角线AC和BD交于点O,BC=8cm,BD=6cm,梯形的高为3cm.E是BC边上的一个动点(点E不与B、C两点重合),EF∥BD交AC于点F,EG∥AC交BD于点G.
(1)如图①,在点E运动过程中,试猜测GE、EF的长度和有什么特点?说明你的理由.
(2)如图②,在点E运动过程中,若点E到BD、AC的垂线段分别为EP、EQ,你能确定EP+EQ的值吗?

解:(1)GE、EF的长度和的特点是GE+EF=OB.
理由是:∵等腰梯形ABCD,AD∥BC,AB=DC,
∴∠ABC=∠DCB,
∵BC=BC,AB=DC,
∴△ABC≌△DCB,
∴∠OBC=∠OCB,
∴OB=OC,
∵EG∥AC,
∴∠GEB=∠OCB,
∴∠GEB=∠OBC,
∴BG=GE,
∵EG∥AC,EF∥BD,
∴四边形OGEF是平行四边形,
∴EF=OG,
∴EG+EF=BG+OG=OB,
即GE+EF=OB.
(2)EP+EQ=4,
理由是:
过D作DH⊥BC于H,过C作CM⊥BD交BD的延长线与M,CN⊥PE于N,
在△BDC中由三角形的面积公式得:
BC•DH=
BD•CM,
BC×DH=BD×CM,
8×3=6CM,
∴CM=4,
∵CM⊥BD,CN⊥PE,EP⊥BD,
∴∠N=∠CMP=∠EPM=90°,
∴四边形NPMC是矩形,
∴PN=CM=4,CN∥BD,
∴∠OBC=∠BCN,
∵∠OBC=∠OCB,
∴∠OCB=∠BCN,
∵EQ⊥AC,
∴∠EQC=∠N=90°,
∴QE=EN,
∴EP+EQ=EN+EP=PN=4,
即EP+EQ=4.
分析:(1)根据等腰梯形的性质求出∠ABC=∠DCB,证△ABC≌△DCB,推出∠OBC=∠OCB,证GB=GE即可推出答案;
(2)过D作DH⊥BC于H,过C作CM⊥BD交BD的延长线与M,CN⊥PE于N,求出△BDC的高CM,证矩形NPMC,推出CM=PN=4,证∠OCB=∠BCN,推出EN=EQ,求出PN=PE+EQ即可.
点评:本题主要考查对等腰梯形的性质,等腰三角形的性质和判定,平行线的性质,平行四边形的性质和判定,矩形的性质和判定,三角形的面积,角平分线的性质,垂线等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.
理由是:∵等腰梯形ABCD,AD∥BC,AB=DC,
∴∠ABC=∠DCB,
∵BC=BC,AB=DC,
∴△ABC≌△DCB,
∴∠OBC=∠OCB,
∴OB=OC,
∵EG∥AC,
∴∠GEB=∠OCB,
∴∠GEB=∠OBC,
∴BG=GE,
∵EG∥AC,EF∥BD,
∴四边形OGEF是平行四边形,
∴EF=OG,
∴EG+EF=BG+OG=OB,
即GE+EF=OB.
(2)EP+EQ=4,
理由是:
过D作DH⊥BC于H,过C作CM⊥BD交BD的延长线与M,CN⊥PE于N,
在△BDC中由三角形的面积公式得:
BC×DH=BD×CM,
8×3=6CM,
∴CM=4,
∵CM⊥BD,CN⊥PE,EP⊥BD,
∴∠N=∠CMP=∠EPM=90°,
∴四边形NPMC是矩形,
∴PN=CM=4,CN∥BD,
∴∠OBC=∠BCN,
∵∠OBC=∠OCB,
∴∠OCB=∠BCN,
∵EQ⊥AC,
∴∠EQC=∠N=90°,
∴QE=EN,
∴EP+EQ=EN+EP=PN=4,
即EP+EQ=4.
分析:(1)根据等腰梯形的性质求出∠ABC=∠DCB,证△ABC≌△DCB,推出∠OBC=∠OCB,证GB=GE即可推出答案;
(2)过D作DH⊥BC于H,过C作CM⊥BD交BD的延长线与M,CN⊥PE于N,求出△BDC的高CM,证矩形NPMC,推出CM=PN=4,证∠OCB=∠BCN,推出EN=EQ,求出PN=PE+EQ即可.
点评:本题主要考查对等腰梯形的性质,等腰三角形的性质和判定,平行线的性质,平行四边形的性质和判定,矩形的性质和判定,三角形的面积,角平分线的性质,垂线等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.
练习册系列答案
相关题目