题目内容
【题目】如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置P的铅直高度PB.(测倾器高度忽略不计,结果保留根号形式)
【答案】OC=100米;PB=米.
【解析】
在图中共有三个直角三角形,即Rt△AOC、Rt△PCF、Rt△PAB,利用60°的三角函数值以及坡度,求出OC,再分别表示出CF和PF,然后根据两者之间的关系,列方程求解即可.
解:过点P作PF⊥OC,垂足为F.
在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OAtan∠OAC=100(米),
由坡度=1:2,设PB=x,则AB=2x.
∴PF=OB=100+2x,CF=100﹣x.
在Rt△PCF中,∠CPF=45°,
∴PF=CF,即100+2x=100﹣x,
∴x=,即PB=米.
练习册系列答案
相关题目