题目内容

【题目】已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中, 每个小正方形的边长是1个单位长度)

(1)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;

(2)以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.

【答案】(1)画图见解析,C1(2,-2);(2)画图见解析,C2(1,0) △A2BC2的面积等于10

【解析】分析:(1)根据网格结构,找出点ABC向下平移4个单位的对应点 的位置,然后顺次连接即可,再根据平面直角坐标系写出点的坐标;(2)延长BA使A=AB,延长BC,使C=BC,然后连接A2C2即可,再根据平面直角坐标系写出点的坐标,利用B所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.

本题解析:1)如图,A1B1C1即为所求,C1(2,-2)

(2)如图,B为所求, (1,0)

B 的面积:

6×4×2×6×2×4×2×4=24644=2414=10

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网