题目内容

【题目】如图,正方形ABCD,动点E在AC上,AF⊥AC,垂足为A,AF=AE.
(1)求证:BF=DE;
(2)当点E运动到AC中点时(其他条件都保持不变),问四边形AFBE是什么特殊四边形?说明理由.

【答案】
(1)证明:∵正方形ABCD,

∴AB=AD,∠BAD=90°,

∵AF⊥AC,

∴∠EAF=90°,

∴∠BAF=∠EAD,

在△ADE和△ABF中

∴△ADE≌△ABF(SAS),

∴BF=DE


(2)解:当点E运动到AC的中点时四边形AFBE是正方形,

理由:∵点E运动到AC的中点,AB=BC,

∴BE⊥AC,BE=AE= AC,

∵AF=AE,

∴BE=AF=AE,

又∵BE⊥AC,∠FAE=∠BEC=90°,

∴BE∥AF,

∵BE=AF,

∴得平行四边形AFBE,

∵∠FAE=90°,AF=AE,

∴四边形AFBE是正方形.


【解析】(1)根据正方形的性质判定△ADE≌△ABF后即可得到BF=DE;(2)利用正方形的判定方法判定四边形AFBE为正方形即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网