题目内容

【题目】回答下列问题:
(1)如图所示的甲、乙两个平面图形能折什么几何体?

(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为f , 顶点个数为v , 棱数为e , 分别计算第(1)题中两个多面体的f+ve的值?你发现什么规律?
(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.

【答案】
(1)

长方体和五棱锥

解答:图甲折叠后底面和侧面都是长方形,所以是长方体;

图乙折叠后底面是五边形,侧面是三角形,实际上是五棱锥的展开图,所以是五棱锥.


(2)

甲:f=6,e=12,v=8,f+ve=2;

乙:f=6,e=10,v=6,f+ve=2;

规律:顶点数+面数﹣棱数=2.


(3)

设这个多面体的面数为x,则

x+x+8﹣50=2

解得x=22.


【解析】(1)由长方体与五棱锥的折叠及长方体与五棱锥的展开图解题.(2)列出几何体的面数,顶点数及棱数直接进行计算即可;(3)考查了欧拉公式,展开图折叠成几何体.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网