题目内容

【题目】已知,直线ABDC,点P为平面上一点,连接APCP.

(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,DCP=20°时,求∠APC.

(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.

(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,AKC与∠APC有何数量关系?并说明理由.

【答案】(1)80°;(2)见解析;(3)见解析

【解析】整体分析:

分别过点P,KAB的平行线,利用平行线的性质和角平分线的定义即可求解.

解:(1)如图1,过PPEAB,

ABCD,

PEABCD,

∴∠APE=BAP,CPE=DCP,

∴∠APC=APE+∠CPE=BAP+∠DCP=60°+20°=80°;

(2)AKC=APC.

理由:如图2,过KKEAB,

ABCD,

KEABCD,

∴∠AKE=BAK,CKE=DCK,

∴∠AKC=AKE+∠CKE=BAK+∠DCK,

PPFAB,

同理可得,∠APC=BAP+∠DCP,

∵∠BAP与∠DCP的角平分线相交于点K,

∴∠BAK+∠DCK=BAP+DCP=BAP+∠DCP)=APC,

∴∠AKC=APC;

(3)AKC=APC.

理由:如图3,过KKEAB,

ABCD,

KEABCD,

∴∠BAK=AKE,DCK=CKE,

∴∠AKC=AKE﹣CKE=BAK﹣DCK,

PPFAB,

同理可得,∠APC=BAP﹣DCP,

∵∠BAP与∠DCP的角平分线相交于点K,

∴∠BAK﹣DCK=BAP﹣DCP=BAP﹣DCP)=APC,

∴∠AKC=APC.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网