题目内容

【题目】已知如图1,P为正方形ABCD的边BC上任意一点,BE⊥AP于点E,在AP的延长线上取点F,使EF=AE,连接BF,∠CBF的平分线交AF于点G.

(1)求证:BF=BC;

(2)求证:△BEG是等腰直角三角形;

(3)如图2,若正方形ABCD的边长为4,连接CG,当P点为BC的中点时,求CG的长.

【答案】(1)证明见解析;92)证明见解析;(3)

【解析】(1)利用线段的垂直平分线的性质以及正方形的性质即可证明;

(2)想办法证明∠F=∠BAF=∠EBP,由∠EBG=∠EBP+∠PBG,∠EGB=∠F+∠GBF,即可解决问题;

(3)求出BG,只要证明△EBP≌△GCP,即可推出CG=BE,由此即可解决问题.

解:(1)证明:∵BE⊥AP,AE=EF,

∴BE垂直平分线段AF,

∴AB=BF,

在正方形ABCD中,AB=BC,

∴BF=BC;

(2)证明:∵四边形ABCD是正方形,

∴∠ABC=90°,

∴∠ABE+∠EBP=90°,

∵BE⊥AF,

∴∠ABE+∠BAP=90°,

∴∠BAP=∠EBP,

∵AB=BF∴∠BAP=∠BFP,

∴∠EBP=∠BFP,

∵∠CBF的平分线交AF于点G,

∴∠CBG=∠FBG,

∴∠EBP+∠CBG=∠BFP+∠FBG,

∴∠EBG=∠EGB,

∵BE⊥AF,

∴△BEG是等腰直角三角形.

(3)解:∵P是BC的中点,正方形的边长为4,

∴AB=4,BP=CP=2,

∵在Rt△ABP中,

∴AP=

∵BE⊥AP,

∴S△ABP=

解得:BE=

∵AB=BC,AB=BF,

∴BC=BF,

由(1)可知∠CBG =∠FBG,

∴BG=BG,

∴△CBG≌△FBG,

∴∠BFP=∠BCG,

由(2)可知∠EBP=∠BFP,

∴∠EBP =∠BCG∵∠EPB =∠CPG,

∴△EBP≌△GCP,

∴CG=BE=

“点睛”本题考查正方形到现在、全等三角形的判定和性质、相等的垂直平分线的性质、等腰直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网