题目内容
如图,边长为2的等边三角形OBA的顶点A在x轴的正半轴上,B点位于第一象限。将△OAB绕点O顺时针旋转30°后,得到△OB'A',点A'恰好落在双曲线上。
(1)在图中画出△OB'A';
(2)求双曲线的解析式;
(3)等边三角形OB'A'绕着点O继续按顺时针方向旋转____度后,点A'再次落在双曲线上?(直接将答案填写在横线上即可,不需要说明理由)
(2)求双曲线的解析式;
(3)等边三角形OB'A'绕着点O继续按顺时针方向旋转____度后,点A'再次落在双曲线上?(直接将答案填写在横线上即可,不需要说明理由)
解:(1)
(2)设B'A'与x轴交于点M
由题意可知:OA=2,∠MOA'=30°,
∴AM=1,
由勾股定理得:OM=,
∴A点的坐标为(,-1),
∵A'恰好落在双曲线,
k=-,
∴双曲线的解析式为:;
(3)30。
练习册系列答案
相关题目