题目内容
【题目】已知:b是最小的正整数,且a、b满足,请回答问题:
(1)请直接写出a、b、c的值: a=______; b=________; c=________.
(2)a、b、c所对应的点分别为A、B、C,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC—AB的值.
(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和x(x>3)个单位长度的速度向右运动,请问:是否存在x,使BC-AB的值随着时间t的变化而不变,若存在求出x;不存在请说明理由.
【答案】(1)a=-1,b=1,c=4; (2)1; (3)x=7
【解析】
(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;
(2)根据两点间的距离公式可求BC、AB的值,进一步得到BC-AB的值;
(3)先求出BC=4t+3,AB=4t+2,从而得出BC-AB,从而求解.
解:(1)∵b是最小的正整数,
∴b=1,
∵|c-4|+(a+b)2=0,
∴c-4=0,a+b=0,∴a=-1,c=4;
(2)BC-AB
=(4-1)-(1+1)
=3-2
=1.
故此时BC-AB的值是1;
(3)t秒时,点A对应的数为-1-t,点B对应的数为3t+1,点C对应的数为xt+4.
∴BC=(xt+4)-(3t+1)=(x-3)t+3,AB=(3t+1)-(-1-t)=4t+2,
∴BC-AB=(x-3)t+3-(4t+2)=(x-7)t+1,
∴BC-AB的值不随着时间t的变化而改变时,其值为7.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目