题目内容
【题目】如图,在正方形中,是等边三角形,的延长线分别交于点,连结与相交于点H.给出下列结论,
①△ABE≌△DCF;②△DPH是等腰三角形;③;④,
其中正确结论的个数是( )
A.B.C.D.
【答案】A
【解析】
①利用等边三角形的性质以及正方形的性质得出∠ABE=∠DCF=30°,再直接利用全等三角形的判定方法得出答案;
②利用等边三角形的性质结合正方形的性质得出∠DHP=∠BHC=75°,进而得出答案;
③利用相似三角形的判定与性质结合锐角三角函数关系得出答案;
④根据三角形面积计算公式,结合图形得到△BPD的面积=△BCP的面积+△CDP面积-△BCD的面积,得出答案.
∵△BPC是等边三角形,
∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
在正方形ABCD中,
∵AB=BC=CD,∠A=∠ADC=∠BCD=90°
∴∠ABE=∠DCF=30°,
在△ABE与△CDF中,,
∴△ABE≌△DCF,故①正确;
∵PC=BC=DC,∠PCD=30°,
∴∠CPD=75°,
∵∠DBC=45°,∠BCF=60°,
∴∠DHP=∠BHC=18075°,
∴PD=DH,
∴△DPH是等腰三角形,故②正确;
设PF=x,PC=y,则DC=AB=PC=y,
∵∠FCD=30°,
∴即,
整理得:
解得:,
则,故③正确;
如图,过P作PM⊥CD,PN⊥BC,
设正方形ABCD的边长是4,
∵△BPC为正三角形,
∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,
∴∠PCD=30°,
∴,
,
S△BPD=S四边形PBCD-S△BCD=S△PBC+S△PDC-S△BCD
,
∴,故④正确;
故正确的有4个,
故选:A.
【题目】已知二次函数的y与x的部分对应值如表:
x | 1 | 0 | 2 | 3 | 4 |
y | 5 | 0 | 4 | 3 | 0 |
下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(,2),B(,3)是抛物线上两点,则,其中正确的个数是 ( )
A. 2B. 3C. 4D. 5