题目内容
【题目】如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.
(1)如图1,求证:AE=DF;
(2)如图2,若AB=2,过点M作 MG⊥EF交线段BC于点G,求证:△GEF是等腰直角三角形
(3)如图3,若AB=,过点M作 MG⊥EF交线段BC的延长线于点G.
①直接写出线段AE长度的取值范围;
②判断△GEF的形状,并说明理由.
【答案】(1)由△AEM≌△DFM可证得(2)关键是证GE=GF,再证有个角是直角。
(3)①<AE≤. ②△GEF是等边三角形
【解析】
试题分析:解:(1)证明:如图1,在矩形ABCD中,∠EAM=∠FDM=90°,∠AME=∠FMD.
∵M是AD的中点,∴AM=DM,
∴△AEM≌△DFM(ASA).
∴AE=DF. 2分
(2)证明:如图2,过点G作GH⊥AD于H,
∴∠A=∠B=∠AHG=90°,
∴四边ABGH为矩形,
∴∠AME+∠AEM=90°,
∵MG⊥EF,
∴∠GME=90°.
∴∠AME+∠GMH=90°
∴∠AEM=∠GMH.
∵AD=4,M是AD的中点
∴AM=2
∵四边ABGH为矩形,
∴AB=HG=2
∴AM=HG
∴△AEM≌△HMG(AAS).
∴ME=MG.
∴∠EGM=45°.
由(1)得△AEM≌△DFM,
∴ME=MF.
∵MG⊥EF,
∴GE=GF.
∴∠EGF=2∠EGM=90°.
∴△GEF是等腰直角三角形. 5分
(3 )①当C、G重合时,如图4,
∵四边形ABCD是矩形,
∴∠A=∠ADC=90°,
∴∠AME+∠AEM=90°.
∵MG⊥EF,
∴∠EMG=90°.
∴∠AME+∠DMC=90°,
∴∠AEM=∠DMC,
∴△AEM∽△DMC
∴,
∴,
∴AE=
当E、B重合时,AE最长为,
∴<AE≤. 7分(注:此小问只需直接写出结果即可)
②如图3,△GEF是等边三角形.
证明:过点G作GH⊥AD交AD延长线于点H,
∵∠A=∠B=∠AHG=90°,
∴四边形ABGH是矩形.
∴GH=AB=2.
∵MG⊥EF,
∴∠GME=90°.
∴∠AME+∠GMH=90°.
∵∠AME+∠AEM=90°,
∴∠AEM=∠GMH.
又∵∠A=∠GHM=90°,
∴△AEM∽△HMG.
∴.
在Rt△GME中,
∴tan∠MEG==.
∴∠MEG=60°.
由(1)得△AEM≌△DFM.
∴ME=MF.
∵MG⊥EF, ∴GE=GF.
∴△GEF是等边三角形. 9分