题目内容
【题目】如图,△ABC是直角三角形,∠ACB=90°.
(1)动手操作:利用尺规作∠ABC的平分线,交AC于点O,再以O为圆心,OC的长为半径作⊙O(保留作图痕迹,不写作法);
(2)综合运用:在你所作的图中,
①判断AB与⊙O的位置关系,并证明你的结论;
②若AC=12,tanOBC=,求⊙O的半径.
【答案】(1)见解析;(2)AB与⊙O相切,理由见解析;(3)
【解析】试题分析:(1)只需按照题目的要求画图即可;
(2)①过点O作OD⊥AB,垂足为D,如图所示,只需证明OD=OC即可;②在Rt△OBC中,运用三角函数可求出,从而得到,易证Rt△ADO∽Rt△ACB,运用相似三角形的性质可求得AD=8,然后在Rt△ADO中运用勾股定理即可解决问题.
试题解析:(1)如图,⊙O即为所求作;
(2)AB与⊙O相切,理由如下:
过点O作OD⊥AB,垂足为D,如图所示.
∵∠ACB=90°,∴OC⊥BC.
∵BO是∠ABC的平分线,OD⊥AB,OC⊥BC,
∴OC=OD.
∴AB与⊙O相切;
(3)在Rt△OBC中,
tan∠OBC=
∴.
又∵∠ADO=∠ACB=90°,∠A=∠A,
∴Rt△ADO∽Rt△ACB,
∴,
∴AD=AC=×12=8.
设⊙O的半径为r,则OD=OC=r,AO=12-r.
在Rt△ADO中,
根据勾股定理可得r2+82=(12-r)2,
解得r=,
∴⊙O的半径是.
练习册系列答案
相关题目