题目内容

【题目】如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BON=   ;(直接写出结果)

(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;

(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)

【答案】(1)60°;(2)射线OP是∠AOC的平分线;(3)30°.

【解析】整体分析:

(1)根据角平分线的定义与角的和差关系计算;(2)计算出∠AOP的度数,再根据角平分线的定义判断;(3)根据∠AOC,∠AON,NOC,∠MON,AOM的和差关系即可得到∠NOC与∠AOM之间的数量关系.

解:(1)如图②AOC=120°,

∴∠BOC=180°﹣120°=60°,

又∵OM平分∠BOC,

∴∠BOM=30°,

又∵∠NOM=90°,

∴∠BOM=90°﹣30°=60°,

故答案为60°;

(2)如图③∵∠AOP=BOM=60°,AOC=120°,

∴∠AOP=AOC,

∴射线OP是∠AOC的平分线;

(3)如图④∵∠AOC=120°,

∴∠AON=120°﹣NOC,

∵∠MON=90°,

∴∠AON=90°﹣AOM,

120°﹣NOC=90°﹣AOM,

即∠NOC﹣AOM=30°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网