题目内容
【题目】如图,把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5。把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为。
【答案】解:由题意易知:∠CAB=45°,∠ACD=30°.
若旋转角度为15°,则∠ACO=30°+15°=45°.
∴∠AOC=180°-∠ACO-∠CAO=90°.
在等腰Rt△ABC中,AB=4,则AC=BC=2 .
同理可求得:AO=OC=2.
在Rt△AOD1中,OA=2,OD1=CD1-OC=3,
由勾股定理得: AD1=.
【解析】抓住已知把一副三角板如图(1)放置,可知∠CAB=45°,∠ACD=30°.根据旋转的性质求出∠ACO的度数,利用勾股定理,可求出AC、AO、OC的长,再求出OD1的长,在Rt△AOD1中,根据勾股定理即可求出结果。
【考点精析】根据题目的已知条件,利用勾股定理的概念和旋转的性质的相关知识可以得到问题的答案,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.
练习册系列答案
相关题目