题目内容
【题目】已知关于, 的方程组
(1)请写出方程的所有正整数解;
(2)若方程组的解满足,求的值;
(3)无论实数取何值,方程总有一个公共解,你能把求出这个公共解吗?
(4)如果方程组有整数解,求整数的值。
【答案】(1) ; ;(2) ;(3)x=0,y=;(4)2或-6.
【解析】试题分析:(1)由题意求方程的解且要使x,y都是正整数,将方程移项,再把x和y互相表示出来,在由题意要求x>0,y>0,根据以上两个条件可夹出合适的x值,从而代入方程得到相应的y值;
(2)由方程组求得x,y的值,代入方程即可求得m的值;
(3)方程整理后,根据无论m如何变化,二元一次方程总有一个固定的解,列出方程组,求出方程组的解即可.
(4)先把m当作已知求出x、y的值,再根据方程组有正整数解,进行判断,再找出符合条件的正整数m的值即可.
试题解析(1)由已知方程x+2y=5,移项得x=5-2y,
∵x,y都是正整数,则有x=5-2y>0,又∵x>0,
∴0<y<2.5,
又∵y为正整数,根据以上条件可知,合适的y值只能是y=1、2,
代入方程得相应x=3、1,
∴方程2x+y=5的正整数解为;
(2) ∵x+y=0
∴x+2y=5变为y=5
∴x=-5
将代入得.
(3) ∵由题意得二元一次方程总有一个公共解
∴方程变为(m+1)x-2y+9=0
∵这个解和m无关,
∴x=0,y=
(4) 将方程组两个方程相加得
∴
∵方程组有整数解且m为整数
∴, ,
①m+2=1,计算得: (不符合题意)
②m+2=-1,计算得: (不符合题意)
③m+2=2,计算得: (不符合题意)
④m+2=-2,计算得: (不符合题意)
⑤m+2=4,计算得: (不符合题意)∴m=2
⑥ m+2=-4,计算得: (不符合题意)∴m=-6