题目内容
【题目】如图,已知平面直角坐标系中,、,现将线段绕点顺时针旋转得到点,连接.
(1)求出直线的解析式;
(2)若动点从点出发,沿线段以每分钟个单位的速度运动,过作交轴于,连接.设运动时间为分钟,当四边形为平行四边形时,求的值.
(3)为直线上一点,在坐标平面内是否存在一点,使得以、、、为顶点的四边形为菱形,若存在,求出此时的坐标;若不存在,请说明理由.
【答案】(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或.
【解析】
(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题.
(2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题.
(3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题.
(1)如图1中,作BH⊥x轴于H.
∵A(1,0)、C(0,2),
∴OA=1,OC=2,
∵∠COA=∠CAB=∠AHB=90°,
∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°,
∴∠ACO=∠BAH,
∵AC=AB,
∴△COA≌△AHB(AAS),
∴BH=OA=1,AH=OC=2,
∴OH=3,
∴B(3,1),
设直线BC的解析式为y=kx+b,则有,
解得:,
∴;
(2)如图2中,
∵四边形ABMN是平行四边形,
∴AN∥BM,
∴直线AN的解析式为:,
∴,
∴,
∵B(3,1),C(0,2),
∴BC=,
∴,
∴,
∴t=s时,四边形ABMN是平行四边形;
(3)如图3中,
如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,
连接OQ交BC于E,
∵OE⊥BC,
∴直线OE的解析式为y=3x,
由,解得:,
∴E(,),
∵OE=OQ,
∴Q(,),
∵OQ1∥BC,
∴直线OQ1的解析式为y=-x,
∵OQ1=OB=,设Q1(m,-),
∴m2+m2=10,
∴m=±3,
可得Q1(3,-1),Q3(-3,1),
当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,
易知线段OB的垂直平分线的解析式为y=-3x+5,
由,解得:,
∴Q2(,).
综上所述,满足条件的点Q坐标为:或或或.
【题目】弹簧挂上物体后会伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如表所示.
所挂物体的质量 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
弹簧的长度 | 12 | 12.5 | 13 | 13.5 | 14 | 14.5 | 15 | 15.5 |
(1)上表反映了哪些变量之间的关系?哪个是自变量,哪个是因变量?
(2)当物体的质量为2kg时,弹簧的长度是多少?
(3)当物体的质量逐渐增加时,弹簧的长度怎样变化?
(4)如果物体的质量为xkg,弹簧的长度为ycm,根据上表写出y与x的关系式;
(5)当物体的质量为2.5kg时,根据(4)的关系式,求弹簧的长度.