题目内容
如图,直线l1与l2相交于点A,点B、C分别在直线l1与l2上,且BC⊥l2,垂足为C点.点D在直线l2上,AC=4,BC=3.
(1)画出⊙O,使⊙O经过点B且与直线l2相切于点D(不写画法,保留画图痕迹);
(2)是否存在这样的⊙O1,既与直线l2相切又与直线l1相切于点B?若存在,求出⊙O1的半径;若不存在,请说明理由.
(1)画出⊙O,使⊙O经过点B且与直线l2相切于点D(不写画法,保留画图痕迹);
(2)是否存在这样的⊙O1,既与直线l2相切又与直线l1相切于点B?若存在,求出⊙O1的半径;若不存在,请说明理由.
(1)如图1:①连接BD,作BD的垂直平分线MN,
②过点D作直线l2的垂线,交直线MN于点O,
③以点O为圆心,OD长为半径作圆,
则⊙O即为所求的圆;
(2)存在.
如图2:设⊙O1切直线l2于点E,连接O1B,O1E,过点O1作O1F⊥BC于点F,
∵BC⊥l2,
∴∠O1EC=∠ECF=∠O1FD=90°,∠O1BA=90°,
∴四边形ECFO1是矩形,
∴FC=O1E,
∵∠BAC+∠ABC=90°,∠O1BF+∠ABC=90°,
∴∠BAC=∠O1BF,
∵∠O1FB=∠ACB=90°,
∴△BO1F∽△ABC,
∴
=
,
设⊙O1的半径为x,
∵AC=4,BC=3,
∴BF=BC-CF=3-x,
在Rt△ABC中,AB=
=5,
∴
=
,
解得:x=
,
∴⊙O1的半径为
.
②过点D作直线l2的垂线,交直线MN于点O,
③以点O为圆心,OD长为半径作圆,
则⊙O即为所求的圆;
(2)存在.
如图2:设⊙O1切直线l2于点E,连接O1B,O1E,过点O1作O1F⊥BC于点F,
∵BC⊥l2,
∴∠O1EC=∠ECF=∠O1FD=90°,∠O1BA=90°,
∴四边形ECFO1是矩形,
∴FC=O1E,
∵∠BAC+∠ABC=90°,∠O1BF+∠ABC=90°,
∴∠BAC=∠O1BF,
∵∠O1FB=∠ACB=90°,
∴△BO1F∽△ABC,
∴
BF |
AC |
O1B |
AB |
设⊙O1的半径为x,
∵AC=4,BC=3,
∴BF=BC-CF=3-x,
在Rt△ABC中,AB=
AC2+BC2 |
∴
3-x |
4 |
x |
5 |
解得:x=
5 |
3 |
∴⊙O1的半径为
5 |
3 |
练习册系列答案
相关题目